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Abstract
Branch predictors typically use combinations of

branch PC bits and branch histories to make predictions.
Recent improvements in branch predictors have come
from reducing the effect of interference, i.e. multiple
branches mapping to the same table entries. In contrast,
the branch difference predictor (BDP) uses data values as
additional information to improve the accuracy of condi-
tional branch predictors. The BDP maintains a history of
differences between branch source register operands, and
feeds these into the prediction process.

An important component of the BDP is a rare event
predictor (REP) which reduces learning time and table
interference. An REP is a cache-like structure designed
to store patterns whose predictions differ from the norm.

Initially, ideal interference-free predictors are
evaluated to determine how data values improve correla-
tion. Next, execution driven simulations of complete
designs realize this potential. The BDP reduces the
misprediction rate of five SPEC95 integer benchmarks by
up to 33% compared to gshare and by up to 15% com-
pared to Bi-Mode predictors.

1. Introduction
Conditional branch prediction is an important tech-

nique for improving processor performance. Correct
branch predictions avoid control dependences and provide
a smooth flow of instructions to be executed. On the
other hand, branch mispredictions halt fetching of usable
instructions until the branch outcome is known. In out-
of-order processors this serializes program execution,
dividing the out-of-order instruction window into sequen-
tially executed segments. Since these problems become
worse with increasing window size, improved branch
prediction is considered a key hurdle for future microar-
chitectures. Consequently, there continues to be ongoing
research (and progress) in branch prediction mechanisms.

The first dynamic branch predictors [23] primarily
relied on local history information to make their predic-
tions. Since that time, conditional branch predictors have
undergone steady improvements. These improvements
fall into three basic categories.

(1) adding global path and history information [19,
24, 27]

(2) refining the ways that global and local history are
combined [3, 15]

(3) reducing table interference through more intelli-
gent table indexing schemes [5, 10, 12, 16, 22]

Virtually all the conditional branch predictors pro-
posed to date use control flow information as basic inputs
either in the form of branch outcomes or branch PCs. In
effect, proposed predictors combine the same type of
information in increasingly clever ways. And, despite the
steady improvements that have been made, many
branches are still mispredicted, and branch prediction
remains an impediment to performance.

To find new ways to improve branch prediction, we
first took a microscopic view, examining the execution of
individual branches to understand why some conditional
branches are difficult to predict. For many important
branches, PCs and branch outcomes alone do not contain
the right information, or the information is not in the right
form. However, many of these branches become easily
predictable if data-value information can be used. This
led us to develop a new class of branch predictors that use
data values; a development culminating in the branch
difference predictor (BDP) -- the topic of this paper.

A straightforward method of integrating data values
into branch prediction is what we refer to as speculative
branch execution, illustrated in Fig. 1. With this type of
predictor, a conventional data-value predictor [13, 20, 21,
26] is first used to predict the input values for a branch
instruction, then the branch instruction is evaluated using
the predicted values. Because conventional branch predic-
tors predict some branches very well, a chooser selects
between a conventional predictor and prediction through
speculative branch execution. We initially considered this
mechanism [9], but ultimately chose a different approach.

We chose to pursue the method illustrated in Fig. 2,
where data-value history information is fed directly into
the branch predictor. In effect, the predictor correlates on
data values similar to the way conventional predictors
correlate on global branch history. This method has a cou-
ple of advantages. First, it leads to a lower latency predic-
tor than speculative branch execution. As explained in
Section 3.1, all predictor tables are accessed in parallel,
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Fig. 1. Branch prediction via speculative exe-
cution.

while speculative branch execution requires one or two
serial tables accesses (depending on the data-value pred-
ictor used), followed by execution of the branch instruc-
tion. Second, it allows some branches to be predicted
using combined branch outcomes and data value informa-
tion; speculative branch execution, as shown in Fig. 2,
uses either branch history or data values, but not both. As
a result we found the direct method (Fig. 2) provides
better prediction accuracy, even when compared to specu-
lative branch execution using a data-value predictor of
unlimited size and an oracle chooser that selects the best
prediction mechanism for each static branch [9].

Branch PC Predictor

Global Branch History

Data Value History

Fig. 2. Using data values for branch pred-
iction directly.

Prediction through speculative branch execution was
recently pursued independently by Gonzalez y Gonzalez
[7], and a similar scheme was studied by Farcy et al. [6].
Gonzalez and Gonzalez also recognized the importance of
using global history and data-value history together by
developing a chooser based on path information.

Other related work uses compiler synthesized dynamic
branch prediction [1] as a software-based approach for
using data values. Compiler synthesized prediction uses
an execution profile to guide a compiler in inserting
instructions into the binary that compute branch-specific
prediction functions. The results of these functions, which
are based on register values, are supplied to hardware
predictors at runtime through ISA extensions. This
mechanism is evaluated for a class of prediction functions

on selected branches [1].
The rest of this paper is organized as follows. Section

2 illustrates reasons for branch mispredictions with exam-
ples motivating the use of data values. Section 3 describes
the branch difference predictor in detail. Section 4 reports
the potential performance of the proposed predictor using
trace-driven simulations of interference-free predictors.
Section 5 reports results of execution-driven simulations
using fixed-size predictors. Section 6 discusses future
research and concludes the paper.

2. Why branches are mispredicted.
In order to improve branch prediction, we first set out

to determine when and why branch history, especially
global branch history, does not correlate well with branch
outcomes. For this purpose we simulated SPEC bench-
marks with an interference-free gselect predictor -- a
separate 2-bit counter was allocated to every combination
of branch PC and global history. Then, we located the
static branches yielding the highest number of mispredic-
tions. We manually inspected the code surrounding these
difficult-to-predict branches, and noted the mechanisms at
work. This process was repeated for a number of
branches, until some basic patterns began to appear. This
study was not intended to be comprehensive, but to pro-
vide insight for designing better predictors. The following
example branches from gcc illustrate typical problems
with global branch history and how data values help.
mispredictions for this branch.

Example 1. One common problem is that the branch
history register is too short to encode the last iteration of a
loop. An example of this is shown in Fig. 3 below. This
simple loop is part of the common memset() C library
function. For the gcc benchmark, the loop runs for 21
iterations on average, which is too many to be recorded in
a typical branch history register (either local or global).
Moreover, the loop iterates a variable number of times.
As a result, the loop terminating branch is mispredicted
most of the time. However, since the loop decrements to

xlen = len / (OPSIZ * 8);
while (xlen > 0)

{
((op_t *) dstp)[0] = cccc;
((op_t *) dstp)[1] = cccc;
((op_t *) dstp)[2] = cccc;
((op_t *) dstp)[3] = cccc;
((op_t *) dstp)[4] = cccc;
((op_t *) dstp)[5] = cccc;
((op_t *) dstp)[6] = cccc;
((op_t *) dstp)[7] = cccc;
dstp += 8 * OPSIZ;
xlen -= 1;

}
Fig. 3. BDP removes 79% of the mispredic-
tions of this difficult-to-predict branch in
gcc.gcc.



0, using the loop counter value as an input to branch pred-
iction permits this branch to be predicted very accurately.
BDP, described in the next section, uses this value to
eliminate 79% of the mispredictions for this branch.

We note that loop-closing branches of this type can
also be successfully handled using a special architected
count register, such as found in the PowerPC [14] and
IA-64 [8] instruction sets. Nevertheless, we also found
many examples, such as those below, where count regis-
ters will not work effectively. Using data values in the
predictor provides benefits similar to a count register, but
is more general, and does not require ISA extensions.

�

Example 2. The code in Fig. 4 is part of the parser
from gcc’s front-end. The parser is automatically gen-
erated by the Bison tool, which produces C code for a
finite-state machine to parse LALR(1) grammars. The if-
statement in bold tests whether or not the next parser
action can be determine solely from the current state,
without reference to a look-ahead token.

yyn = yypact[yystate];
if (yyn == YYFLAG) goto yydefault;
...
switch(yyn) {

... 281 cases ...
}

Fig. 4. BDP removes 75% of the mispredictions
of this difficult-to-predict branch in gcc.

The heart of the parser is a switch function with 281
cases surrounded by complex control flow. This tends to
confuse the global branch history, with no consistent
correlation between specific static branches and bits in the
history register. Global branch history does not correlate
well to this branch; the interference-free gselect predictor
used in Section 4 mispredicts this branch 19.5% of the
time. However, since source code is highly regular, it is
not surprising that parser states and actions are also regu-
lar. BDP capitalizes on the regularity of these data-values,
reducing the misprediction rate to 4.8%.

Local history does not work well either. Using only
local history results in a 34% misprediction rate for this
branch. Predicting the branch with both global and local
history produces an 8.0% misprediction rate, a significant
improvement, though still not as good as BDP. Table 1
illustrates why. Table 1 shows a selection of the branch’s
executions. These instances have the same global history
(TTTN TNTN NTTT TNTN) and local history (TTTN). The
local history pattern maps to both taken and not-taken
branches. Hence, the local-history based predictor misses
frequently, even in combination with global history. How-
ever, the branch is never taken when the data-value his-
tory is 8126, and is always taken when the data-value his-
tory is 82cf. Data-value history contains the correct infor-
mation to predict for these instances of the branch, while
local branch history does not. �

Table 1. Branch executions from Example 2.�����������������������������������������������������������������������������
History T/N Prediction Result

Local Data BDP Local +
Value Global�����������������������������������������������������������������������������

TTTN 82cf T H H
TTTN 8126 N H M
TTTN 8126 N H H
TTTN 82cf T H M
TTTN 82cf T H M
TTTN 8126 N H M
TTTN 82cf T H M
TTTN 8126 N H M�����������������������������������������������������������������������������
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From studying these branches and others, we con-
cluded that many hard-to-predict branches would be, in
fact, relatively easy to predict if the predictor could be
given the right information. In particular, these same
branches correlate well with the values tested by the
branch instruction. This conclusion led us to develop the
branch difference predictor described next.

3. The branch difference predictor (BDP)
The overall design of the BDP is shown in Fig. 5. The

basis of the proposed predictor is correlation on data
values. To make this practical, the predictor overcomes
two difficulties discussed below -- the large numbers of
patterns that occur with data values, and the delay in
updating the data values due to out-of-order execution
and pipeline latencies.

3.1. Managing large numbers of data values.
Because many branch instructions test two register
values, we reduce the amount of data history by using the
difference of the two branch source register operands
instead of the operands themselves. Since branch out-
comes are based on subtracting the two inputs and look-
ing at the sign and/or detecting a zero difference, these
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Fig. 5. The branch difference predictor
(BDP).



branch differences correlate very well with branch out-
comes. Consequently, the BDP collects these branch
difference values in the value history table (VHT) in Fig.
5. Value history information, described below in Section
3.2, is maintained per static branch, and is retrieved using
the branch PC.

Even when using branch differences, the number of
patterns is still very large. A single static branch instruc-
tion may produce many values, but only a few of these
branch differences will be significant. If all values are
used for all branches, then either the storage space
becomes excessive, or there will be excessive table
interference.

In order to further reduce storage space, we use the
observation that not all difference patterns need to be
stored. The conventional backing predictor in Fig. 5
predicts most cases without using difference values. The
small remaining subset of the patterns are predicted by a
separate structure, a rare event predictor (REP), using
both the data-value and global branch history.

An REP is a tagged cache-like structure which is used
to predict only the difficult, exceptional cases. The
replacement policy used by the REP explicitly searches
for patterns that lead to correct branch predictions differ-
ing from the one made by the backing predictor. The REP
derives from partial pattern matching [4, 17], and these
structures have appeared in various kinds of predictors
[11, 18, 25], most similarly the YAGS branch predictor
[5].

Referring again to Fig. 5, while the VHT is being
accessed, the REP is accessed in parallel with the PC and
global branch history (GBH). The value history is used
for the tag check. If the pattern is found, the REP pro-
vides the prediction. If the REP does not contain the pat-
tern, the backing predictor provides the prediction. The
tags in the REP serve as a built-in chooser to indicate
when the REP should be used instead of the backing pred-
ictor, and have the additional benefit of eliminating
interference within the REP.

Since the REP is intended only to correct the rare,
exceptional cases, we place new patterns into the REP
only when the backing predictor mispredicts. Since the
branch outcome is known when a new entry is placed in
the REP, the two bit counters for the entry are set to
weakly taken or not-taken according to the outcome of
the branch. The backing predictor is only updated when it
provides the prediction. This is important because it
allows the REP to reduce interference in the backing
predictor, as well as improve correlation.

3.2. Managing delayed updates. The actual data
values used by a branch are rarely available at the time
the branch is to be predicted. In fact, because of loops the
branch predictor may be several dynamic instances ahead
of the computation of input data values. Using the most
recent known-good (committed) data values leads to stale
data and inaccurate predictions. As an alternative, the
data values used can be predicted and updated

speculatively, but this requires an explicit data-value
predictor, as well as recovering and restoring data-value
history when there is a misprediction.

As a compromise, for each static branch we keep the
last known-good branch difference and a dynamic count
of the occurrences of the branch fetched beyond this
point. These two items together are nearly as good as
using the speculatively updated data, but no data-value
predictor is needed. Consider a predictable, repeating
stream of branch differences. The last committed branch
difference indicates where the last committed branch was
in the stream. The number of outstanding branches indi-
cates how much further down the stream the current
branch is from the last committed branch. Together, they
form a reliable indication of the current branch difference,
and the outcome of the current branch.

The VHT collects branch differences and counts for
use by the predictor in two tables (Fig. 6). The branch
difference cache (BDC) stores the most recently commit-
ted branch difference, indexed and tagged by the branch
PC. Misses in the BDC are simply handled by not using
the REP for that prediction. Since the BDC only contains
committed values, these values never need to be repaired
after exceptions or branch mispredictions.

The branch count table (BCT) keeps track of the
number of outstanding instances of each static branch,
indicating how out-of-date the differences in the BDC
are. When a branch is fetched, the corresponding counter
in the BCT is incremented. When the branch is committed
the counter is decremented and the BDC is updated with
the new difference. After a branch misprediction, the
count for each squashed branch is decremented. Note that
the BCT is untagged; tagging makes it difficult to keep
the counters synchronized across replacements.

Branch
Count

Branch
Difference

PC

Hit

Count

Branch

(BCT)
Table

Branch

(BDC)

Difference
Cache

Fig. 6. The value history table.

3.3. A special case: set instructions. Set instruc-
tions in the MIPS-based SimpleScalar ISA perform a
comparison and pass the result of the comparison to a
later branch as a zero or one. In this case the branch
difference contains no additional information beyond the
branch outcome. To allow BDP to work well with set
instructions, these instructions also produce the difference



of their inputs. When a branch uses a value produced by a
set instruction, this set difference is used to compute the
branch difference in place of the zero/one branch input.

This requires an extra table containing a valid bit and a
set difference for each architected register. The
configuration studied here truncates differences to eight
bits (with little loss in performance), and requires only a
36 byte table. When a set instruction retires, it stores its
set difference in the table, and sets the valid bit for the
output architectural register. Other instructions clear the
valid bit when they retire. When a branch retires, it con-
sults the valid bit for each operand in the table. If the
valid bit is set, then that operand was produced by a set
instruction. In this case the set difference from the table is
used to compute the branch difference, in place of the
zero/one operand. Note that this complication is on the
update path, not on the critical prediction path.

4. Interference-free predictors. Initially we use
interference-free tables for all portions of the branch
predictor so we can study the potential improvement of
correlating on data values. We compare with an
interference-free gselect predictor using 16 bits of global
branch history, also used as the backing predictor for the
REP. The VHT contains a unique difference and count for
every static branch. Likewise the REP has a separate
fully-tagged two-bit counter for every combination of PC,
global history, branch difference, and count.

Since these tables are interference-free, we always
update both the REP and the backing predictor, regardless
of which table made the prediction. We also place all pat-
terns in the REP, regardless of whether the prediction was
a hit or miss.

Since this initial study was trace-driven, the timing of
updates to the VHT are not accurate. The difference
values are artificially "aged" by throwing away the n most
recent values, which is equivalent to setting all BCT
counts to (n+1), as the count of outstanding branches
includes the branch being predicted. A count of one
means the branch currently being predicted is the only
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Fig. 7. Misprediction rates for interference-free predictors.

instance of that static branch outstanding. Varying the
count in this way allows us to measure how sensitive the
correlation is to the age of the branch difference. To
determine how much data-value history is helpful, the
number of difference values used for correlation is also
varied in this initial study. That is, we consider sequences
of difference values ranging in length from 1 to 3, in a
manner similar to context-based data predictors [21].

4.1. Simulation methodology. We study five of the
less predictable SPECint95 benchmarks, compress, gcc,
go, ijpeg, and li, shown in Table 2. We simulate the first
200M instructions of each benchmark using a reduced
input data set to exercise more benchmark code. go and
ijpeg both complete before 200M instructions. The branch
working set is the number of static branches that account
for 90% of the dynamic branch executions.

The benchmarks are simulated with the SimpleScalar
2.0 suite [2], modified to simulate the Bi-Mode predictor,
the value history table, and the REP. The initial studies
use trace driven simulation. The final study uses sim-
outorder, the SimpleScalar cycle-level superscalar timing
simulator.

Table 2. Benchmark characteristics�	�����������������������������������������������������������������������������������������
Bench Input Instr. Dyn. Branch

(1.0e6) Branch Working
(1.0e6) Set
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comp 400000 e 200 28.4 26
gcc gcc.i 200 30.6 3126
go 9 9 133 16.0 1092
ijpeg specmun 129 9.9 84
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4.2. Results. Fig. 7 shows the branch misprediction
rates for gcc, go, and the average over all five bench-
marks. Cumulative misprediction rates are computed
using a weighted average based on a constant workload



model in which each of the five benchmarks account for
the same number of branches. The horizontal dashed line
near the top of each graph is the gselect misprediction
rate, and the three lower curves are the BDP mispredic-
tion rates using value histories one, two, and three branch
differences long. Compared to gselect, using branch
differences in addition to branch history further reduces
the misprediction rate by 7% (compress) to 51% (li) with
an average of 19%.

The majority of the improvement is gained by using a
single branch difference. The average misprediction rates
plotted in Fig. 7 show that adding a second or third
branch difference to the value history results in little addi-
tional improvement. This means BDP can provide the
bulk of the improvement with a single branch difference,
and we use this simpler design throughout this paper.

The X axis is the age of branch differences, which is
varied from one to four. The clock-cycle simulations in
Section 5.4 will show that the count field is within this
range 93% of the time. The positive slope of the curves in
Fig. 9 indicate that older branch differences do not corre-
late with the branch outcome as well as more recent
values, but the degradation is not severe. Using a linear
least-squares fit, the misprediction rate increases by
0.09% per outstanding branch.

It is also interesting to look at the improvement of indi-
vidual static branches in the program. Fig. 8 contains
scatter plots of all the static branches executed in
compress and gcc. For each branch the mispredictions
made by the gselect predictor are compared to mispredic-
tions made by BDP. The X axis shows the number of
mispredictions caused by the static branch when predicted
with gselect. The Y axis shows the number of mispredic-
tions eliminated when using the branch difference predic-
tor. Branches improved by BDP are plotted above zero on
the Y axis; branches mispredicted more often by BDP are
plotted below zero on the Y axis. A point on the x=y line
indicates that all mispredictions of that branch were
eliminated by the branch difference predictor. Looking at
compress, four branches have mispredictions virtually
eliminated by the branch difference predictor. All other
branches are relatively unaffected. On the other extreme,
gcc has a wide range of static branches helped by varying
amounts; very few are hurt. The example branches from
Fig. 3 and 4 have been marked on this plot. The other
three benchmarks we studied look more like gcc than
compress [9].

5. Fixed-size predictors
After verifying that branch differences have significant

potential to improve branch prediction accuracy, we
confirm this using detailed simulations of realistic predic-
tors. Performance simulations are important to correctly
determine how old the data being used for prediction is,
which depends on when branches commit. Details of the
simulated superscalar pipeline are in Table 3.
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Table 3. Modeled superscalar pipeline parameters. ����������������������������������������������
Fetch 8 instructions/cycle, 1 taken branch
Issue 8 instructions/cycle,

4 loads or stores/cycle
Branch penalty 8 cycle minimum (fetch to execute)
Instr. window 64 instructions, 32 loads and stores
L1 D-cache 64KB, 2-way set associative,

16 byte lines, 1 cycle latency
L1 I-cache 64KB, 2-way set associative,

16 byte lines, 1 cycle latency
L2 unified cache 1MB, 4-way set associative,

16 byte lines, 8 cycle latency
Memory 100 cycles, 16 byte bus� ���������������������������������������������������������������������������������������������
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5.1. Predictor configurations. The branch differ-
ence predictor presents a large design space. The
configuration used in this study, shown in Fig. 9a and b,
was incrementally derived through many simulations [9],
but is not presented as an optimal point.



The VHT (Fig. 9a) is only 164 bytes total. The count
of outstanding branches is stored in 256 untagged two-bit
counters. To reduce table cost, the branch difference
values are truncated to the low-order eight bits of the
difference and stored in 64 entries, indexed with the low
order bits of the PC, and tagged with the next four bits of
PC.

PC[7:0]

PC[4:0]

Branch Count

Branch Difference

Hit

82 2-bit

2-way
assoc.

Tag = PC[8:5]

64 bytes

BCT

counters

BDC

32 sets
100 bytes

PC[0] is the least significant
meaningful bit of the PC,
the 4th bit in the SimpleScalar ISA

Fig. 9a. Value history table (VHT)
configuration.

The REP (Fig. 9b) is a 6KB table containing 2048
entries of three bytes each. Each entry has a six bit
replacement counter, whose purpose is explained in Sec-
tion 5.1, four 2-bit counters for prediction, and a ten bit
tag. The most recent bits of global branch history select
among the four 2-bit counters per entry. Eight bits of PC
along with four more bits of GBH select the set. The tag
is a XOR-based hash of seven PC bits, four GBH bits, the
eight low-order bits of the branch difference and the two
bit count from the VHT.

Hit

Prediction

PC[7:0]      {GBH[2:5],0000}
8-way
assoc.

Tag = {000, PC[14:8]}      {GBH[6:9],000000}      {BDT, BCT}

REP
6KB

256 sets

GBH[0] is the youngest bit of  global branch history.

PC[0] is the least significant meaningful bit of the PC, 
  the 4th bit in the SimpleScalar ISA.

2-bit counter index = GBH[1:0]

Fig. 9b. Rare event predictor
configuration.

We use the gshare and Bi-Mode predictor
configurations shown in Fig. 9c and d as both base-case
predictors and as backing predictors for the REP.

It is important to avoid the trap of using too much glo-
bal history in the gshare predictor [10, 15, 22]. Conse-
quently, for a gshare predictor with a pattern history table
(PHT) containing 2N 2-bit saturating counters this study

uses only N-4 bits of GBH, as shown in Fig. 9c. Aligning
the GBH bits with the most-significant bits of the PC
reduces interference.

Prediction

2N cnt

64KB
8KB to

N ranges from 15 to 18 inclusive.

GBH[0] is the youngest bit of  global branch history.

PC[0] is the least significant meaningful bit of the PC,
the 4th bit in the SimpleScalar ISA.

PC[N-1:0]      {GBH[0:N-5], 0000}

PHT

Fig. 9c. Gshare predictor configuration.

The Bi-Mode predictor [12] reduces interference over
gshare by splitting the PHT into two direction PHTs. A
choice PHT selects between the two tables. The choice
PHT directs predominantly taken branches to use the
"taken" direction PHT and predominantly not-taken
branches to use the "not-taken" direction PHT, reducing
destructive interference. Although the large gshare pred-
ictors studied here have very little interference, the Bi-
Mode predictor still consistently improves prediction
accuracy. The primary reason is that the choice PHT acts
like local branch history, improving the correlation of the
predictor, as well as reducing interference.

Similar to the gshare predictor, to further reduce
interference the direction PHT is indexed with one less bit
of global branch history than the maximum possible.
Making the choice PHT half the size of each of the direc-
tion PHTs reduces the space-overhead of using Bi-Mode,
without significantly hurting prediction accuracy.

N ranges from 15 to 18 inclusive.

GBH[0] is the youngest bit of  global branch history.

PC[0] is the least significant meaningful bit of the PC,
  the 4th bit in the SimpleScalar ISA.

2(N-2) cnt

Choice
PHT

2KB to
16KB

Direction
PHT

4KB to
32KB

2(N-2) cnt

Direction
PHT

4KB to
32KB

2(N-2) cnt

{GBH[0:N-3],0}
PC[N-2:0] Prediction

PC[N-3:0]

Fig. 9d. Bi-Mode predictor configuration.



Like Bi-Mode, YAGS [5] is another advanced predic-
tor aimed at reducing interference in a global history
based predictor. Because the YAGS branch predictor also
uses an REP, we considered using it as a "state-of-the-art"
comparison for BDP. However, in our simulations YAGS
did not perform as well as the gshare or Bi-Mode predic-
tors described above.

5.2. REP replacement policy. The replacement pol-
icy used by the REP deserves special attention. Many
more combinations of PC, global history, count value, and
branch difference occur than can be held in the 2048
available REP entries. The conclusion is that the REP is a
cache that must be managed very carefully to avoid des-
tructive thrashing. Under these circumstances traditional
replacement policies like random replacement, and least-
recently-used do not work well [9].

The goal of the replacement policy is to find the most
useful patterns and keep these, and only these, in the REP.
An entry is useful when it provides corrective predictions,
i.e. correct predictions where the backing predictor would
have missed. When the REP makes the same prediction as
the backing predictor, the prediction is redundant.

The REP replacement policy employs a six bit counter
per entry to keep track of how useful an entry has been
recently. The entry with the lowest counter value in the
set is replaced. The counter is incremented by two when a
corrective prediction is detected during branch commit.
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Fig. 10. Branch misprediction rates

The replacement counter is decremented by two for every
redundant prediction. When the counter saturates at 63,
all the other counters in the same set are divided by two.
To prevent a single entry from saturating repeatedly and
zeroing all the other counters this is only done if the
counter was not already at 63. This replacement policy
directly measures the usefulness of a pattern over the
recent past. Furthermore, the usefulness of the pattern is
compared against the other competing patterns in the
same set, as opposed to an arbitrary threshold.

Although the replacement policy is complex, replace-
ments only occur for one quarter of mispredicted
branches. Three quarters of the mispredictions are ran-
domly ignored. This gives the replacement policy time to
evaluate new patterns, improving branch prediction accu-
racy and reducing the replacement bandwidth. Further-
more, this complexity is off the critical prediction path.

5.3. Overall performance.
Fig. 10 shows the misprediction rates for four predic-

tors, gshare, Bi-Mode, BDP backed by gshare
(BDP/gshare) and BDP backed by Bi-Mode (BDP/Bi-
Mode). Misprediction rates are plotted against the size of
the predictor in kilobytes. On average, BDP removes 13%
to 9% of the mispredictions over gshare, and 12% to 8%
of the mispredictions over Bi-Mode. Greater improve-
ment is generally seen for the smaller configurations.



Fig. 11 plots the average instructions-per-cycle (IPC)
versus predictor size. BDP produces speedups of 2.4% to
1.2% over gshare, and speedups of 1.5% to 0.8% over
Bi-Mode alone. Although these speedups are relatively
small, there are several things to note. First, they are in
line with speedups obtained for other recent innovations
in branch predictors, such as the Bi-Mode predictor simu-
lated here. (We note that most branch prediction studies
are trace driven and do not provide the resulting speed-
up.) Secondly, speedups are model-dependent. More
aggressive implementations may reduce other bottlenecks
in the processor, making performance more sensitive to
branch prediction. However, some preliminary investiga-
tions with 128 instruction windows showed little differ-
ence in either IPC or branch prediction rate.
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Fig. 11. Instructions-per-cycle.

5.4. REP effectiveness. Fig. 12 shows a histogram of
the number of outstanding branches, as indicated by the
BCT. 93% of the time only one to four branches are out-
standing, and most of the time, the branch being predicted
is the only instance. This is a favorable result, since Sec-
tion 4.2 showed that branch differences provide helpful
information for prediction over this range, and it allows
two-bit wrapping counters to be used to store the count
values. The counts stray above 8 a mere 1.2% of the time.

Since two-bit counters do sometimes wrap over, the
predictor may not know exactly how many branches are
outstanding. A outstanding count of 2 may mean 2, 6 or
10 branches are outstanding. We have found that this
effect does not degrade accuracy significantly. Moving to
three bits would increase the BCT from 64 bytes to 96
bytes.

Table 4 provides statistics for the 26KB BDP/Bi-Mode
predictor configuration demonstrating the effectiveness of
the REP. The backing predictor makes 87.0% of the pred-
ictions on average; the REP predicts a small minority of
the branches. The REP has a higher misprediction rate
(12.1% vs. 7.1%), even though it has very little interfer-
ence and better correlation. The fact that the REP
improves the overall prediction rate means that the REP is
doing better on these predictions than the backing predic-
tor does by itself. This indicates that the REP is doing
what it is supposed to do: provide exceptionally good
predictions for the exceptionally difficult cases. The final

column shows that 51.5% of REP predictions correct the
prediction made by the backing predictor.
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Fig. 12. Average counts of outstanding
branches.

Table 4. REP performance statistics.�����������������������������������������������������������������������������������
Backing Pred. REP

Bench Portion Miss Miss Corrective�����������������������������������������������������������������������������������
comp 87.1 8.0 9.7 53.8
gcc 91.6 5.0 12.5 53.0
go 91.8 12.6 17.8 40.9
ijpeg 84.1 5.8 10.4 54.4
li 81.6 1.8 8.9 59.1
Avg. 87.0 7.1 12.1 51.5�����������������������������������������������������������������������������������
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6. Conclusions and further research
We have demonstrated that general purpose register

values provide useful information for predicting branches.
Using data-values has produced a significant incremental
improvement in branch prediction accuracy, an improve-
ment as large as the previous improvements over gshare.
The differences of branch source operands used by BDP
are a particularly useful and readily available form of
register value.

In combination with data-values, the rare event predic-
tor (REP) improved correlation, reduced interference in
the backing predictor, and handled the large number of
patterns which data-values tend to cause. By using the
REP, BDP improved on both gshare and the Bi-Mode
predictors when used alone. Furthermore, BDP can be
used with other predictors that have been or may be
developed in the future.

Future research will focus on further extending the
amount and type of information embedded in the REP.
Since the REP tags are computed in parallel with the
array access, adding or modifying the information used in
the prediction is easy. For instance, further research may
find more local history [27] and path history [7, 19, 24]
are helpful.

The information used in the REP can even be adapted
dynamically. Rather than a one-size-fits-all approach,
predictor parameters can be adjusted to suit the program
being run. For instance, this study correlated on a single
single branch difference because larger data-value



contexts increased the number of patterns, hurting most of
our benchmarks. However, li is aided significantly by
using two or three branch differences [9]. Similar to
Dynamic History-Length Fitting [10] it should be possible
to dynamically adapt the type and amount of information
used by the REP.

Register data values are one example of the wealth of
information processors provide beyond branch PCs and
outcomes. Future progress will be made by intelligently
assimilating this information into branch predictors.
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